
 

 

MATHEMATICAL EXPECTATION (UNIVARIATE) 

 

Introduction: 

The expected value of a discrete random variable is the average value of the 

random variable.  

If 1 2 nx , x ,…,x  are different values of a random variable x with their 

respective probabilities        1 2 3 nx , P x , P x , ......,P xP then the expected 

value of the random variable  X is denoted by  E X  and is defined as 

follows:  

         

 

1 1 2 2 3 3 n . n

n

i i

i =1

E  = x  P x  + x  P x  + x  P x  + .... +x P x

E  =

X

X x p

  


 

Remark 1: If the p. m. f. is in functional form P(X), then 

 
n

i =1

XE  = x P (X)  

Remark 2: Expected value of X gives some indication as to the location of 

the probability distribution, although E(X) need not even be in the range of 

X.  

For example: If X is the number of points on the uppermost face when a fair 

die is rolled, then 
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Probability as an Expectation:  



 

 

Let A be any event. We can write P(A) as an expectation, as follows.  

Define the indicator function: 

A

1 if event A occurs
I  =

0 otherwise

 
 
 

 

Then AI  is a random variable, and 

         

     

   

1

A A A A

r = 0

A A

A

E I  = X = r  P I  = r = 0 ×P I = 0  +1 ×P I = 1

 E I  =P I  = 1  = P A . 

Thus P A  = E I  for any event A



 

Expected Value of a Function of a Random Variable:- 

Let X be a discrete random variable with p. m. f. P(X), and let Y=g(X). 

Suppose that we are interested in finding E(Y). One way to find E(Y) is to 

first find the p. m. f. of Y and then use the expectation of Y as follows: 

       
n

i=1

E Y  = E g X  = g X P X     

Theorems on Expectation: 

Theorem 1: Expected value of a constant is the constant itself. E(C) = C 

Proof: Let  i ix , p ; i = 1, 2, 3, ..., n denote the probability distribution of a 

discrete random variable X. 

Let g(X) = C, is a constant 
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i=1

E C =E g X = g x p

E C = C  p

E C =C  p C is constant

E C =C 1  p 1

E C = C

  



 
 

 









 



 

 

Theorem 2: The mathematical expectation of the sum of function of a 

random variable and the other constant is equal to the sum of the 

mathematical expectation of the function of that random variable and the 

other constant i.e.  

E(X + b) = E(X) + b 

Proof: Let  i ix , p ; i = 1, 2, 3, ..., n denote the probability distribution of a 

discrete random variable X. 

Let g(X) = X + b 
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i=1 i=1

E X + b =E g X = g x p

E X + b = x  + b   p

E X + b =  x  p b  p b is constant

E X + b =E X b 1  x  p E X  and  p 1

E X + b =E X b

  





 
   

 







 

 

 

Theorem 3: The mathematical expectation of the sum of product between a 

constant and function of a random variable is equal to the sum of the product 

of the constant and the mathematical expectation of the function of that 

random variable i.e. E(a X) = a E(X) 

Proof: Let  i ix , p ; i = 1, 2, 3, ..., n denote the probability distribution of a 

discrete random variable X. 

Let g(X) = a X 

     

   

n

i i

i=1

n

i i

i=1

E a X =E g X = g x p

E a X = ax   p
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E a X =a  x  p a is constant

E a X = aE X  x  p E X

E a X = aE X

 
 

 



  

Theorem 4:The mathematical expectation of the sum of product between a 

constant and function of a random variable and the other constant is equal to 

the sum of the product of the constant and the mathematical expectation of 

the function of that random variable and the other constant. 

i.e. E(a X +b) = a E(X) + b 

Proof: Let  i ix , p ; i = 1, 2, 3, ..., n denote the probability distribution of a 

discrete random variable X. 

Let g(X) = a X + b 
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E a X + b =E g X = g x p

E a X + b = ax b   p

E a X + b = ax  p b p

E a X + b =a  x  p b  p a is constant

E a X + b = aE X b 1  x  p E X and  p 1

E a X + b = aE X b

  

 

 



 
   

 







 

 

 

 

Variance and Standard Deviation of a Random Variable: 

The variance of a random variable X is a measure of how spread out 

it is. Are the values of X clustered tightly around their mean, or can we 

commonly observe values of X a long way from the mean value? The 

variance measures how far the values of X are from their mean, on average. 



 

 

Definition: Variance of a random variable X is defined as the Arithmetic 

Mean of the Square of Deviations taken about Arithmetic Mean 

     
2 22Var X  = σ = E X-E X = E X-μ    

The variance is the mean squared deviation of a random variable from its 

own mean.  

If X has high variance, we can observe values of X a long way from the 

mean.  

If X has low variance, the values of X tend to be clustered tightly around 

the mean value. 

Theorems on Variance: 

Theorem 1: Variance of a constant zero. V(C) = 0; C is constant 

Proof: Let  i ix , p ; i = 1, 2, 3, ..., n denote the probability distribution of a 

discrete random variable X. 

By definition of variance 

   

   
 

   

 

2

2

2

Var X  = E X-E X

C is constant
Var C  = E C-C

E C C

Var C  = E 0

Var C  = 0

  

 
 

   

Theorem 2: Variance is invariant to the change of origin. i. e. V(X + a) = 

V(X);  

a is constant. 

Proof: Let  i ix , p ; i = 1, 2, 3, ..., n denote the probability distribution of a 

discrete random variable X. 

By definition of variance 
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2

Var X+ a  = E X+ a -E X+ a

Var X+ a  = E X+ a-E X - E a

a is constant
Var X+ a  = E X+ a-E X - a

E a C

Var X+ a  = E X-E X

by definition of variance
Var X+ a  = V X

V X E X-E X

  

  

 
      

  

 
 
     

 

Theorem 3: Variance is invariant to the change of origin. i. e. 

   2V aX  = a V X ; a is constant. 

Proof: Let  i ix , p ; i = 1, 2, 3, ..., n denote the probability distribution of a 

discrete random variable X. 

By definition of variance 
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2
2

Var aX = E aX -E aX

Var aX  = E aX-aE X E a a

Var aX  = E a X-E X

Var aX  = a E X-E X

by definition of variance
Var aX  = a V X

V X E X-E X

  

  

  

  

 
 
     

 

Theorem 4: Variance is invariant to the change of origin. i. e. 

   2V aX + b  = a V X ; a and b are constants. 

Proof: Let  i ix , p ; i = 1, 2, 3, ..., n denote the probability distribution of a 

discrete random variable X. 

By definition of variance 
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Var aX+ b  = E aX+ b -E aX+ b

Var aX+ b  = E aX+ b-E aX - E b

E b b
Var aX+ b  = E aX+ b-aE X - b

E aX aE X

Var aX+ b  = E aX-aE X

Var aX+ b  = E a X-E X

Var aX+ b  = a E X-E X

by defi
Var aX+ b  = a V X

  

  

 
       

  

  

  

   
2

nition of variance

V X E X-E X

 
 
     

 

Remark:   

(i) If we define 
x-a

y =
h

then  
2 2

Y x2

1
σ = σ

h
            

2 2 2

Y x

2 2 2

x Y

x y

h σ =σ

σ =h σ

σ = h σ

 

(ii) If we define
x-μ

Y =
σ

, μ & σ are mean & standard deviation respectively.  

E(Y) = E(x)-E(μ)

μ-μ
E(Y) = = 0

σ



 

    2

2 2

x-μ 1 1
Var X = σVar y =Var =1

σ σ σ

 
 

 
 

Y has mean 0 and variance 1 is called standardized r. v. 

(iii)        
2

Var -3X-5 = Var X  = -3 9 Var x  



 

 

(iv)      S.D. -3X-5 = S.D. X  = 3S3 .D. X  

Examples:  

[1] The mean and variance of marks in statistics (x) are 60 and 25 

respectively. Find the mean and variance of 
X-60

Y=
5

 

Solution: – E(x) = 60 & Var(X) = 25 

 

X-60
Y=

5

E(X)-60
E(Y)= =0

5

 

   

 

 

Var Y Var

Var

1
= X

25

1
= 25

25
Y

Var Y =1

 

[2] Let X be a discrete r.v. with mean 5 and S. d. 3. Compute mean and S. 

d. of 2X-5, 3-7x, 
X+1

2
 

Solution: – Given E(x) =5, xσ 3    

Let Y= 2X-5 

E(Y) = 2 E(X) -5 = 2 x 5 -5= 5 

   S.D. 2X-5 = S.D. X  = 22 3 = 6  

Let Y= 3-7X 

E(Y) = 3-7 E(X)  = 3-7 x 5= -32 

   S.D. 3-7X = S.D. X  = 7 3 27 = 1  



 

 

Let Y =
X+1

2
 

 
 

 

 

E Y =

E Y

E X +1

2

5 +
=

1

2

E Y = 3

 

 
X+1 1

S.D. Y = = S.D. X  = 
1 3

2 2 2
3 =

2
 

 
 
 

 

Moments of a random variable:- 

Raw moment (Definition):- 

The r
th

 raw moment of X is defined as the r
th

 moment about zero. It is 

denoted by 
'

rμ and is given by 

n
' r r

r i i

i=1

' '

0 1

μ =E(x )= x .p , r =1,2,3,....n

μ =1 and  μ =Mean


 

Central moment (Definition):- 

The r
th

 central moment of X is defined as the r
th

 moment about mean. It is 

denoted by rμ and is given by 

n
r r

r i i

i=1

0 1

2

2

μ =E[X-E(X)] = E[X -E(X)] .P , r =1,2,3,....n

μ =1 μ =0

μ =E[X-E(X)] = var(X)



 

Moment about any arbitrary point ‘a’(Definition):- 



 

 

The r
th
 arbitrary moment of X is defined as the r

th
 moment about ‘a’. It is 

denoted by 
'

rμ (a) and is given by 

n
' r r

r i i

i =1

μ (a)=E(X-a) = (X -a) .P  

Note: Taylor series for  

x

2 3 k
x

k=0

2 2 2

2 2 2 2

x

e x R

x x x
[i] e =1+ x+ + + ...... =

2! 3! k!

[ii] (x+ y) = x + y + 2xy

[iii] (x+ y+ z) = x + y + z + 2xy+ 2zx+ 2 yz

Where,M (t)isfiniteand t [-a,a],a ispositiveconstant



 





 

Moment generating function (M.G.F.):- 

Moment is useful to find moments of probability distribution. It is also 

useful in distribution theory. If two random variables have same m.g.f. then 

they have the same distribution. 

Definition:- 

Suppose X is a random variable with p.m.f. P(X) then the m.g.f. of X is 

denoted by XM (t) and is given by 

tx tx

XM (t)=E(e )= e .P(x)  

Provided
txE(e ) is convergent for the values of t in neighborhood of zero

(i.e.-h < t < h, h >0) . XM (t)  can be expressed in powers of t as follows 



 

 

2 3 4
tx

X

2 2 3 3 4 4

X

2 3 4
2 3 4

X

2
, ,

X 1 2

(tx) (tx) (tx)
M (t)=E(e )=E(1+ tx + + + +......)

2! 3! 4!

t x t x t x
M (t)=E(1+tx+ + + +....................)

2! 3! 4!

t t t
M (t)=1+t.E(x)+ .E(X )+ E(x )+ E(x )+...........................

2! 3! 4!

t
M (t)=1+tμ + .μ

2!

3 4
, ,

3 4

r r
' th

X r

r=0

t t
+ .μ + μ +............

3! 4!

t t
M (t)= μ (weconclude that ther moment of x is thecoefficient of

r! r!





 

Properties of Moment Generating Function (m. g. f.): 

[1]   X
M 0 =1  

Proof: By definition of m. g. f. 

 
  tx

x 0

X

X

0

t E(e )

(0)=E(

M =

e )=E(e )=E(M 1)=1
 

[2] If X is r. v. with m. g. f. of  XM t and a is constant then prove that 

  at

x+a XM t =e M (t)   

Proof: By definition of m. g. f.                                           

t(x+a) tx+at tx at

X+a

at tx at

X

M (t)=E e =E e =E e .e

=e .E e =e M (t)

          

  

    

[3] If XM (t)  is a m. g. f. of a r. v. X then prove that: cx xM (t)=M (ct),  c is 

constant 

Proof:  By definition of m.g.f. 

tx

X

tCX (Ct)X

CX X

M (t)=E(e )

M (t)=E e =E e =M (ct)       

  



 

 

[4] If XM (t) is a m. g. f. of a r. v. X then prove that 
at

a + cX XM (t)=e M (ct)  

Proof: By definition of m.g.f. 

tx

X

t(a+cx) at+cxt

a+cx

at cxt at ctx at

a+cx X

M (t)=E(e )

M (t)=E[e ]=E[e ]

M (t)=E[e .e ]=e .E[e ]=e M (ct)

   

[5] If XM (t)  is a m. g. f. of a r. v. X then prove that: 
-at

b
XX-a

b

t
M (t)=e .M

b 
 
 

 
 
 

  

[6] If X & Y are independent  random  variable  with  M.G.F.  XM (t)   and 

YM (t)  respectively then X+Y X YM (t)=M (t) .M (t)  

Proof: 

 xt+ty tx ty tx ty

x+y

x+y X Y

X & Y are independent r.M v(t)=E[e ]=E[e .e ]=E[e ].E(e )

M (t)=M (t).

.

M (t)
 

 

Uniqueness  property of M.G.F:  

For a given probability distribution there is unique M.G.F. if it exists and 

for a given M.G.F. there is a unique probability distribution  

Cumulative generating function (C.G.F) : 

It is useful to find the central moments  

Definition: – In a given random variable X has M.G.F. XM (t)  then the 

cumulative generating function is denoted by XK (t)  and is given by    



 

 

X e X

X

X

2 3 r

1 2 3 r

2 r
' ' '

e 1 2 r

t t t
=k t+k +k +....+k

2! 3! r!

t t
=log

K (t)=

1+μ t+μ +....+μ

log M (t)

K (t)

K (t)
2! r!

 
 
 

 

2
2 3 2 3

' ' ' ' ' '

1 2 3 1 2 3

3 4
2 3 2 3

' ' ' ' ' '

1 2 3 1 2 3

t t 1 t t
μ t+μ +μ +......... - μ t+μ +μ +..........

2! 3! 2 2! 3!
=

1 t t 1 t t
+ μ t+μ +μ +......... - μ t+μ +μ +......... +..........-

3 2! 3! 4 2! !

 

3

    
    
    
 

    
    
    

 

Comparing a coefficients of like powers of t on both sides, we get, the 

relationship between the moments and cumulants. 

1

1 1

1 1 2
1 1 22 2 1

2 2 1 2

k = μ = mean

k μ (μ )
= - =k μ -(μ ) =μ

2! 2! 2

  

 

 

1 1 1
3

13 3 1 2
1

3
1 1 1 1

3 3 1 2 1 3

2

4 4 2

k μ 2 μ μ 1
= - + μ

3! 3! 2 2! 3!

k =μ -3μ μ +2 μ =μ

k =μ -3k

 

2

4 4 2μ = k +3k   

If X and Y two r.v. and equality holds for their m.g.f.    x yM t =M t then X 

and Y have the same probability distribution X YF (x)=F (y)   

Note:  

2 3

e

3 3 3 3

x x
log (1+ x) = x- + - ............ x <1

2 3

(x+ y+ z) = x + y + 2 + 3(x+ y)(y+ 2)(x+ 2)

  



 

 

Properties of cumulants generating function (c. g. f.): 

[1] If Y=X-a, then except the first cumulant all other cumulants of X and Y 

are same, a being constant. 

Proof:  Let XM (t)  be M.G.F. of X, therefore, we have property M.G.F.  

at

X+a X

-at

x-a x

M (t) = e M (t)

M (t) = e M (t)
  

 Given Y = X-a  

-at

Y X-a XM (t) =M (t) = e M (t)   

Taking log on the both side, we get  

-at

Y X

Y X

Y X

logM (t) = log[e M (t)]

K (t) = -at+ logM (t)

K (t) = -at+ K (t)

  

2 3 2 3

1 2 3 1 2 3

t t t t
K (t)+K +K +........=-at K (t)+K +K +........

2! 3! 2! 3!

 
 
 

  

 
2 3 2 3

1 2 3 1 2 3

t t t t
K (t)+K +K +........= t K -a +K +K +........

2! 3! 2! 3!
 

Equating coefficient of t on both side, we get  

First cumulant is 1 1k = k -a  and all other cumulants  r 2  are same.  

 [2] If Y = hX then , r cumulants of 
r thY= h ×(r cumulant of X) , h is 

constant.   

Solution: Let XM (t)  be m.g.f. of X, given Y= h X          

 y XM (t)=M (ht) by property of m.g.f.   



 

 

Taking log on both sides, we get  

Y XlogM (t) = logM (ht)  

Y XK (t) = K (t)..................( by defination of cumulants)   

2 3 2 r
1 2 3

1 2 r

t t (ht) (ht)
K +K +K +.....=K (ht)+K +.......+K

2! 3! 2! r!
  

2 3 r 2 3 r
2 3 r

1 2 3 r 1 2 3 r

t t t t t t
K t+K +K +........+ K = h.K +h K +h K +......+h K

2! 3! r! 2! 3! r!
  

Equating coefficients of
rt

r!
 on both sides we get  

r

r rK  of Y=h .K  of X   

 

(3)  Additive property of cumulants: 

If X and Y are independent random variables then r rK  of X+K  of Y  

 Proof: 

 Let XM (t) and  YM (t) be m. g. f of X and Y  

Given X and Y are independent random variable then 

X+Y X YM (t) = M (t)M (t)   

 Taking log on both sides we get  

   X+Y X Y

X+Y X Y

X+Y X Y

log M (t)  =log M (t)M (t)

logM (t) =log M (t) log M (t)

K (t) = K (t) + K (t)

  

Equating coefficients of  
rt

r!
 on both sides, We get 

Kr of (X+Y)=Kr of X +Kr of Y 



 

 

Coefficient of skewness (Y1) is defined as  

2

3 3 3

3 331 2
2

μ μ μ
β= = =

)
γ

μ σ(σ
=     

Interpretation:  

 If 1γ 0 , the distribution is symmetric  

 If 1γ 0 , the distribution is positively skewed  

 If 1γ 0 , the distribution is negatively skewed  

The  coefficient of kurtosis ( 2γ ) is defined as  

4
2 2 2

2

μ
= β -3 =

μ
γ -3   

It is also called as excess of kurtosis  

Interpretation:  

If 2γ 0 , the distribution is mesokurtic 

If  2γ 0 , is the distribution is leptokurtic  

If 2γ 0 , is the distribution is platykurtic 

Theory Questions: 

[1] Define mathematical expectation of a discrete random variable X 

[2] Explain how E (X) is the arithmetic mean of X. Can E (X) always be 

one of the possible values of X? Explain.  

[3] What is the physical interpretation of E (X)?  

[4] Define expectation of a function of random variable.  

[5] Define variance of a discrete random variable. 

[6] Show that variance is invariant to the change of origin, but not of scale.  

[7] What is meant by standardized random variable? Explain with the help 

of an illustration.  

[8] Prove that Variance of a constant is zero,  



 

 

[9] Define moment generating function of a random variable X. prove that 

 X
M 0 =1  

[10] Define moment generating function of a random variable X. prove that 

   at

X + a X
M t = e M t  

[11] Explain how the raw moments can be obtained using M.G.F. 

[12] Define cumulant generating function of r.v. X. Also explan how to 

obtain the cumulants from C.G.F.  

[13] State expressions for four central moments in terms of first four 

cumulants.  

[14] State the properties of C.G.F.  

[15] Show that the C.G.F. of sum of two independent r.v.s. is sum of their 

C.G.F's.  

[16] Prove that the central moments are invariant to the change of origin. 

 

 


