CURVE FITTING (NON-LINEAR REGRESSION)

Derivation of Non-Linear Regression Model of Y on X: (Fitting of Second degree equation)

Suppose (x_i, y_i) ; i= 1,2,...,n., are n pairs of observations on variables X, Y. We assume that Y as dependent variable, which can be expressed in terms of X. The general second degree curve will be $y = a + bx + cx^2$. We find the constants a, b and c by using least square principle.

We assume the model $y = a + bx + cx^2 + e \dots (1)$

 $\mathbf{e} = \left(\mathbf{y} - \mathbf{a} - \mathbf{b}\mathbf{x} - \mathbf{c}\mathbf{x}^2\right)^2$

By using principal of least square

Symbolically we write $S = \sum_{i=1}^{n} e_i^2$ as sum of squares of errors. We find the points minima using calculus methods.

The solution of equation $\frac{\partial s}{\partial a} = 0$, $\frac{\partial s}{\partial b} = 0$ and $\frac{\partial s}{\partial c} = 0$ gives, extreme points.

$$S = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - a - bx_i - cx_i^2)^2$$

$$\frac{\partial s}{\partial a} = \frac{\partial}{\partial a} \sum_{i=1}^{n} (y_i - a - bx_i - cx_i^2)^2$$

$$\frac{\partial s}{\partial a} = \sum_{i=1}^{n} \frac{\partial}{\partial a} (y_i - a - bx_i - cx_i^2)^2$$

$$0 = -2\sum (y_i - a - b\sum x_i - c\sum x_i^2)$$

$$\sum y_i = \sum a + b \sum x_i + c \sum x_i^2$$

$$\sum y_i = na + b \sum x_i + c \sum x_i^2$$
 ...(2)
Similarly, $\frac{\partial s}{\partial b} = \frac{\partial}{\partial b} \sum (y_i - a - bx_i - cx_i^2)^2 = 0$ gives
 $\frac{\partial s}{\partial b} = \sum_{i=1}^n \frac{\partial}{\partial b} (y_i - a - bx_i - cx_i^2)^2$

$$0 = 2 \sum (y_i - a - bx_i - cx_i^2) (-x_i)$$

$$0 = \sum x_i y_i - \sum x_i a - b \sum x_i^2 - c \sum x_i^3$$

$$\sum x_i y_i = a \sum x_i + b \sum x_i^2 + c \sum x_i^3$$
 ...(3)
Similarly, $\frac{\partial s}{\partial c} = \frac{\partial}{\partial c} \sum (y_i - a - bx_i - cx_i^2)^2 = 0$ gives
 $\frac{\partial s}{\partial c} = \sum_{i=1}^n \frac{\partial}{\partial c} (y_i - a - bx_i - cx_i^2)^2$

$$0 = 2 \sum (y_i - a - bx_i - cx_i^2)^2$$

$$0 = 2 \sum (y_i - a - bx_i - cx_i^2) (-x_i^2)$$

$$0 = \sum x_i^2 y_i - \sum x_i^2 a - b \sum x_i^3 - c \sum x_i^4$$

$$\sum x_i^2 y_i = a \sum x_i^2 + b \sum x_i^3 + c \sum x_i^4$$
 ...(4)

Equations (2), (3) and (4) are called as normal equations. Solving these equations simultaneously, we get a, b and c . after putting the values of a, b and c in the second degree curve , we get predicted y.

Second Method:

$$u = x-a$$
; $x = a + u$
or
 $u = \frac{(x-a)}{h}$; $x = a + hu$

$$y = a + bx + cx^{2}$$
 becomes $y = a' + b'u + c'u^{2}$

$$\sum y_{i} = na + b\sum x_{i} + c\sum x_{i}^{2}$$
 becomes $\sum y_{i} = na' + b'\sum u_{i} + c'\sum u_{i}^{2}$

$$\sum x_{i}y_{i} = a\sum x_{i} + b\sum x_{i}^{2} + c\sum x_{i}^{3}$$
 becomes $\sum u_{i}y_{i} = a'\sum u_{i} + b'\sum u_{i}^{2} + c'\sum u_{i}^{3}$

$$\sum x_{i}^{2}y_{i} = a\sum x_{i}^{2} + b\sum x_{i}^{3} + c\sum x_{i}^{4}$$
 becomes $\sum u_{i}^{2}y_{i} = a'\sum u_{i}^{2} + b'\sum u_{i}^{3} + c'\sum u_{i}^{4}$

$$\sum u_{i} = 0$$
 and $\sum u_{i}^{3} = 0$

$$a' = \frac{\left(\sum y_{i} - c'\sum u_{i}^{2}\right)}{n}; b' = \frac{\left(\sum u_{i}y_{i}\right)}{\sum u_{i}^{2}}$$
 and $c' = \frac{\left(n\sum u_{i}^{2}y_{i} - \sum u_{i}^{2} \times \sum u_{i}^{4}\right)}{n\sum u_{i}^{4} - \left(\sum u_{i}^{2}\right)^{2}}$

[i] Fitting of an Exponential Curve $y = ab^x$

In some situation growth of y is at larger rate with respect to x for exa. Suppose y; population and x ;year in this case instead of second degree ,an exponentian curve fits well The nature of curve is given by following figure, Suppose $\{(x_i, y_i)\}$, i=1,2...n } is a sample of n pairs on (x, y) we can write $y = ab^x$ in linear form (if a > 0, b > 0) by taking log on both side $y = ab^x$ Log $y = Log(ab^x)$ Log $y = Log a + Log b^x$ Log y = Log a + x Log bLet, $v = log y, A^* = log a$ and $B^* = log b$ then we get, $V = A^{'} + B^{'}x$ V = A + BUNormal equations are $\sum V = nA + B\sum U$ and $\sum UV = A \sum U + B\sum U^2$ Solving these normal equations for A and B, we get

a = antilog A and b = antilog B. With this value of A and B, curve is the best fit to the given set of n points.

[ii] Fitting of an Exponential Curve $y = ax^{b}$

 $y = ax^{b}$ $Log y = Log(ax^{b})$ $Log y = Log a + Log x^{b}$ Log y = Log a + b Log x Let, v = log y, A = log a and U = log x then we get, V = A + bUNormal equations are $\sum V = nA + b\sum U \text{ and } \sum UV = A \sum U + b\sum U^{2}$

Solving these normal equations for A and b.

Numerical Examples:

Example 1: The profit in lakhs of Rs. earned by company in x^{th} year is tabulated below. Fit a second degree curve $y = a + bx + cx^2$. Also, estimate profit in 7th year.

Year (x)	1	2	3	4	5			
Profit (y)	24	27	32	38	45			
Solution: Take 3 as origin								

X	U	У	U^2	U ³	\mathbf{U}^{4}	Uy	$U^2 y$
1	-2	24	4	-8	16	-48	96
2	-1	27	1	-1	1	-27	27
3	0	32	0	0	0	0	0
4	1	38	1	1	1	38	38
5	2	45	4	8	16	90	180
Total	0	166	10	0	34	53	341

The equation $y = a + bx + cx^2$ has following normal equations.

$$\sum y_i = na + b\sum x_i + c\sum x_i^2$$

$$\sum x_i y_i = a\sum x_i + b\sum x_i^2 + c\sum x_i^3$$

$$\sum x_i^2 y_i = a\sum x_i^2 + b\sum x_i^3 + c\sum x_i^4$$

Example 2: The population of a state is given below. Fit the curve $y = ab^{x}$

Year 1951 1961 1971 1981 1991 Population 140 170 200 250 300 **Solution:-** We know that $y = ab^x$ $\text{Log } y = \text{Log}(ab^x)$ $Log y = Log a + Log b^{x}$ Log y = Log a + x Log bV = A' + B'xV = A + BU $U = \frac{(x-\overline{x})}{10}$ and $\overline{x} = \frac{\sum x}{n} = \frac{9855}{5} = 1971$

Year	$U = \frac{(x-1971)}{10}$	Y	V=log y	U^2	UV
1951	-2	140	2.1461	4	-4.2922
1961	-1	170	2.2304	1	-2.2304
1971	0	200	2.3010	0	0
1981	1	250	2.3979	1	2.3979
1991	2	300	2.4771	4	4.9542
9855	0		11.5525	10	0.8295

As usual the normal equation obtained using least square principle will be

$\sum V = nA + B\sum U$	\Rightarrow 11.5525=5A+0B	
⇒11.5525=5A	\Rightarrow 2.3105=A	
$\sum \mathbf{U}\mathbf{V} = \mathbf{A}\sum \mathbf{U} + \mathbf{B}\sum \mathbf{U}^2$	\Rightarrow 0.8295=0A+10B	
$\Rightarrow 0.8295 = 10B$	$\Rightarrow 0.08295 = B$	
V = 2.3105 + 0.08295 U		
$a = antilog A \implies a$	= antilog 2.3105	\Rightarrow a = 204.41
$b = antilog B \implies b$	= antilog 0.08295	\Rightarrow b = 1.2105
$y = ab^x$		
$y = 204.41 \times 1.2105^{U}$		

Example 3: Fit $y = ax^{b}$ to the following data. Also, find R^{2} using MS-Excel commands

X	2	3	4	5	6
Y	4	23	50	78	175

Solution:-

X	Y	$U = \log_e x$	$V = \log_e y$	U^2	UV
2	4	0.6931	3.1355	0.4805	2.1734
3	23	1.0986	3.9120	1.2069	4.2978
4	50	1.3863	4.3567	1.9218	6.0397
5	78	1.6094	4.8122	2.5903	7.7449
6	175	1.7918	5.1648	3.2104	9.2541
20	330	6.5793	21.3812	9.4099	29.5098

The normal equation will be

5A + 6.5793b = 21.3812 ...(1) 6.5793A + 9.4099b = 29.5098 ...(2) Solving (1) and (2), we get b=1.8275, A=1.8716 a=Antilog A $\Rightarrow a = 6.4984$ ∴ The equation is y = 6.4984x^{1.8275} y = 6.4984x^{1.8275}

[A] THEORY QUESTIONS:

[1] Explain the procedure of fitting second degree curve $Y = a + bX + cX^2$ for bivariate data.

[2] Explain the procedure of fitting the curve $Y = ab^x$ for a bivariate data.

[3] Explain the procedure of fitting the curve $Y = ax^b$; a > 0, b > 0 for a

bivariate data.

[B] Numerical Problems:

[1] Fit a curve of the type $Y = b^x$ for the following data using least squares principal:

X	1	2	3	4
Y	3.5	12	45	150.5

Answer: $Y = (3.5107)^{x}$

[2] Fit a curve of the type $Y = ab^x$ for the following data using least squares principal:

Х	2	3	4	5	6
Y	144	172.8	207.4	248.8	298.5

Answer: $Y = 100.026(1.42)^{x}$

[3] Fit a curve of the type $Y = ax^{b}$ for the following data using least squares principal:

Х	2	3	4	5	6
Y	144	172.8	207.4	248.8	298.5
		(550			

Answer: $Y = 87.4849(x)^{0.6558}$

[4] Fit a curve of the type $Y = a + bX + cX^2$ for the following data using least squares principal:

Year	2015	2016	2017	2018	2019
Index of Jute	185	169	191	203	275
export prices					

Answer: $Y = 48195126.59 - 47810.1414X + 11.8571X^2$