Introduction

- 1.) Gas Chromatography
 - Mobile phase (carrier gas) is a gas
 - Usually N₂, He, Ar and maybe H₂
 - Mobile phase in liquid chromatography is a liquid
 - Requires analyte to be either <u>naturally volatile</u> or can be converted to a <u>volatile</u> <u>derivative</u>
 - GC useful in the separation of small organic and inorganic compounds
 - Stationary phase:
 - Gas-liquid partition chromatography nonvolatile liquid bonded to solid support
 - Gas-solid chromatography underivatized solid particles
 - Bonded phase gas chromatography chemical layer chemically bonded to solid support

Bonded phase

Carbon layer

Fused silica

Magnified Pores in activated carbon

Zeolite molecular sieve

Introduction

2.) Instrumentation

- Process:
 - Volatile liquid or gas injected through septum into heated port
 - Sample rapidly evaporates and is pulled through the column with carrier gas
 - Column is heated to provide sufficient vapor pressure to elute analytes
 - Separated analytes flow through a heated detector for observation

Instrumentation

- 1.) Open Tubular Columns
 - Commonly used in GC
 - > Higher resolution, shorter analysis time, and greater sensitivity
 - Low sample capacity
 - Increasing Resolution
 - Narrow columns → Increase resolution

- Resolution is proportional to \sqrt{N} , where N increases directly with column length

Easy to generate long (10s of meters) lengths of narrow columns to maximize resolution

Instrumentation

- 1.) Open Tubular Columns
 - Increasing Resolution

Instrumentation

- 1.) Open Tubular Columns
 - Increasing Resolution

Instrumentation

- 2.) Choice of liquid stationary phase:
 - Based on <u>"like dissolves</u> <u>like"</u>
 - Nonpolar columns for nonpolar solutes
 - Strongly polar columns for strongly polar compounds
 - To reduce "bleeding" of stationary phase:
 - bond (covalently attached) to silica
 - Covalently cross-link to itself

 Table 24-1
 Common stationary phases in capillary gas chromatography

Instrumentation

3.) Packed Columns

- Greater sample capacity
- Broader peaks, longer retention times and less resolution
 - Improve resolution by using small, uniform particle sizes

Instrumentation

- 3.) Packed Columns
 - The major advantage and use is for large-scale or preparative purification
 - Industrial scale purification maybe in the kilogram or greater range

500 L chromatography column

Retention Index

1.) Retention Time

- Order of elution is mainly determined by <u>volatility</u>
 - Least volatile = most retained
 - Polar compounds (ex: alcohols) are the least volatile and will be the most retained on the GC system

Table 24-2 Polarity of solutes

Nonpolar	Weak intermediate polarity			
Saturated hydrocarbons	Ethers			
Olefinic hydrocarbons	Ketones			
Aromatic hydrocarbons	Aldehydes			
Halocarbons	Esters			
Mercaptans	Tertiary amines			
Sulfides	Nitro compounds (without α -H atoms)			
CS ₂	Nitriles (without α -atoms)			
Strong intermediate polarity	Strongly polar			
Alcohols	Polyhydroxyalcohols			
Carboxylic acids	Amino alcohols			
Phenols	Hydroxy acids			
Primary and secondary amines	Polyprotic acids			
Oximes	Polyphenols			
Nitro compounds (with α -H atoms)				
Nitriles (with α -H atoms)				

 Second factor is similarity in polarity between compound and stationary phase

Retention Index

- 2.) Describing Column Performance
 - Can manipulate or adjust retention time by changing polarity of stationary phase

- Can use these retention time differences to classify or rate column performance
 - Compare relative retention times between compounds and how they change between columns
- Can be used to identify unknowns

Retention Index

Increase in Polarity

2.) Describing Column Performance

Retention index based on the difference in the number of carbons (N, n) for linear alkane and corresponding retention times (t_r'(unknown), t_r'(N),t_r'(N)):

$$I = 100 \left[n + (N - n) \frac{\log t'_{r}(unknown) - \log t'_{r}(n)}{\log t'_{r}(N) - \log t'_{r}(n)} \right]$$

Provides a means to compare the performance of different columns

Table 24-3 Retention indexes for several compounds on common stationary phases

	Retention index ^a					
Phase	Benzene b.p. 80°C	OH Butanol b.p. 117°C	O 2-Pentanone b.p. 102°C	NO ₂ 1-Nitropropane b.p. 132°C	N Pyridine b.p. 116°C	
Poly(dimethylsiloxane)	657	648	670	708	737	
(Diphenyl) _{0.05} (dimethyl) _{0.95} - polysiloxane	672	664	691	745	761	
(Diphenyl) _{0.35} (dimethyl) _{0.65} - polysiloxane	754	717	777	871	879	
(Cyanopropylphenyl) _{0.14} - (dimethyl) _{0.86} polysiloxane	726	773	784	880	852	
(Diphenyl) _{0.65} (dimethyl) _{0.35} - polysiloxane	797	779	824	941	943	
Poly(ethylene glycol)	956	1 142	987	1 217	1 185	
(Biscyanopropyl) _{0.9} - (cyanopropylphenyl) _{0.1} - polysiloxane	1 061	1 232	1 174	1 409	1 331	

Temperature and Pressure Programming

- 1.) Improving Column Efficiency
 - <u>Temperature programming:</u> >
 - **Temperature is raised** during the separation (gradient)
 - increases solute vapor pressure and decrease retention time

Temperature gradient improves resolution while also decreasing retention time

Temperature and Pressure Programming

- 1.) Improving Column Efficiency
 - Pressure Programming:
 - Increase pressure \rightarrow increases flow of mobile phase (carrier gas)
 - Increase flow → decrease retention time

Van Deemter curves indicate that column efficiency is related to flow rate

- Pressure is rapidly reduced at the end of the run
 - Time is not wasted waiting for the column to cool
 - Useful for analytes that decompose at high temperatures

Carrier Gas

1.) N_2 , He and H_2 are typical carrier gases

<u>He:</u>

- Most common and compatible with most detectors
- Better resolution (smaller plate heights)
- Solutes diffuse rapidly → smaller mass transfer term

► <u>N₂:</u>

- Lower detection limit for a flame ionization detector
- Lower resolution and solute diffusion rates

► <u>H₂:</u>

- Fastest separations
- Can catalytically react with unsaturated compounds on metal surfaces
- Can not be used with mass spectrometers Forms explosive mixtures with air
- Better resolution (smaller plate heights)
- Solutes diffuse rapidly → smaller mass transfer term

Flow rate increases $N_2 < He < H_2$

Diffusion coefficients follow: $H_2 > He > N_2$

- 1.) "Sandwich" Injection
 - Separate sample with air bubbles and solvent

- Air bubble prevents depletion of most volatile compounds before sample injection is complete (barrier between oven and sample during injection)
- Solvent is used to pushes out sample, but bubble prevents mixing
- Final air bubble pushes out solvent
- Gas-tight syringe is required for gas samples
- Injection volume is typically 0.1-2 μL

- 1.) "Sandwich" Injection
 - Injection port

- Inject rapidly (< 1s) through septum into evaporation zone
- Injector temperature is kept high (350°C) for fast evaporation
- Rapid gas flows carries sample to mixing chamber for complete vaporization and complete mixing before entering column

- 2.) Split Injection
 - Delivers only 0.2-2% of sample to the column
 - Split ratio of 50:1 to 600:1 (sample discarded)
 - > For samples where analytes of interest are >0.1% of sample
 - Best resolution is obtained with smaller amount of sample
 - \leq 1 μ L with \leq 1 ng of each compound (0.5 mL of gas volume)
 - > Not quantitative, split not constant

Sample Injection

2.) Splitless Injection

- Delivers ~80% of sample to the column
- > For trace analysis, where analytes of interest are < 0.01% of sample
 - Large volume (~2 μL) injected slowly (2s)
- No mixing chamber or split vent
 - Injection temperature is lower (220°C)
 - 40°C below the boiling point of the solvent

- 2.) Splitless Injection
 - "Solvent trapping" significantly improves the performance of splitless injections
 - Initial lower temperature of column during injection keeps larger volume into a narrow band
 - Chromatography is initiated by raising column temperature
 - <u>Cold trapping</u> condense solutes in narrow band at the beginning of column by using an initial temperature 150°C below boiling points of solutes of interest

- 3.) On-column Injection
 - Delivers ~100% of sample to the column
 - For samples that decompose above their boiling points
 - Solution injected directly on column
 - Warming column initiates chromatography

Detectors

- 1.) Qualitative and Quantitative Analysis
 - Mass Spectrometer and Fourier Transform Infrared Spectrometers can identify compounds as part of a GC system
 - Compare spectrum with library of spectra using a computer
 - Compare retention times between reference sample and unknown
 - Use multiple columns with different stationary phases
 - Co-elute the known and unknown and measure changes in peak area
 - > The area of a peak is proportional to the quantity of that compound

Area of Gaussian peak = 1.064 × peak height × $w_{1/2}$

Peak area increases proportional to concentration of standard if unknown/standard have the identical retention time \rightarrow same compound

Detectors

2.) Thermal Conductivity Detector

- > Measures amount of compound leaving column by its ability to remove heat
 - He has high thermal conductivity, so the presence of any compound will lower the thermal conductivity increasing temperature of filament
- > As heat is removed from filament, the resistance (R) of filament changes
 - Causes a change in an electrical signal that can be measured
- Responds to *all* compounds (universal)
 - Signal changes in response to flow rate of mobile phase and any impurities present
 - Not very sensitive

Ohm's Law: V =IR

Based on Ohm's law, monitored potential (V) or current (I) Changes as resistance (R) of filament changes due to presence of compound

Detectors

3.) Flame Ionization Detector

- Mobile phase leaving the column is mixed with H_2 and air and burned in a flame
 - Carbon present in eluting solutes produces CH radicals which produce CHO+ ions
 - Electrons produced are collected at an electrode and measured
- Responds to almost all organic compounds and has good limits of detection
 - 100 times better than thermal conductivity detector
 - Stable to changes in flow rate and common mobile phase impurities (O₂, CO₂,H₂O,NH₃)

$CH + O \longrightarrow CHO^+ + e^-$

Burn sample and measure amount of produced electrons

Detectors

4.) Electron Capture Detector

- Sensitive to halogen-containing and other electronegative compounds
- Based on the capture of electrons by electronegative atoms
 - Compounds ionized by β-rays from radioactive ⁶³Ni
- Extremely sensitive (~ 5 fg/s)

Detectors

5.) Mass Spectrometry

- > Detector of Choice \rightarrow But Expensive!
- Sensitive and provides an approach to identify analytes
- Selected ion monitoring monitor a specific mass/charge (mz) compared to scanning over the complete spectra
 - Simplifies complex chromatogram
 - Increases sensitivity by 10²-10³

Detectors

6.) Other Detectors

- Respond to limited class of analytes
- Modification of previous detectors
- Nitrogen-Phosphorous detector
 - Modified flame ionization detector
 - Extremely sensitive for compounds containing N and P
 - Important for drugs and pesticides
- Flame photometric detector
 - Measures optical emission from P (536 nM), S (394 nM), Pb, Sn, and other select elements after passing sample through flame (flame ioniation detector)
- Photionization detector
 - Uses a ultraviolet source to ionize aromatic and unsaturated compounds, electrons produced are measured (Electron capture detector)
- Sulfur/nitrogen chemiluminescence detector
 - Collects exhaust of flame ionization detector
 - S and N converted to SO and NO
 - Mix with O₃ form excited state of SO₂ (emits blue light) and NO₃

Sample Preparation

- 1.) Transform sample into form suitable for analysis
 - Extraction, concentration, removal of interfering species or chemically transforming (derivatizing)

2.) Solid-phase microextraction

- Extract analytes from complex mixture *without* solvent
- Uses a fused-silica fiber coated with stationary phase
 - Stationary phase similar to those used in GC
- Expose Fiber to sample to extract compounds and then inject fiber into GC to evaporate analytes

Sample Preparation

Method Development in GC

- 1.) How to Choose a Procedure for a Particular Problem
 - Many Satisfactory Solutions
 - > The order in which the decision should be made should consider:
 - 1. Goal of the analysis
 - 2. Sample preparation
 - 3. Detector
 - 4. Column
 - 5. Injection
 - Goal of the analysis
 - Qualitative vs. quantitative
 - Resolution vs. sensitivity
 - Precision vs. time
 - Interest in a specific analyte
 - > Sample preparation
 - Cleaning-up a complex sample is essential
 - Garbage in \rightarrow garbage out
 - Choosing the Detector
 - Detect a specific analyte(s) or everything in the sample
 - sensitivity
 - Identify an unknown (MS, FTIR)

Method Development in GC

- 1.) How to Choose a Procedure for a Particular Problem
 - Selecting the Column
 - Consider stationary phase, column diameter and length, stationary phase thickness
 - Match column polarity to sample polarity
 - To improve resolution, use a:
 - a. Longer column
 - b. Narrower column
 - c. Different stationary phase
 - > Choosing the Injection Method
 - Split injection is best for high concentrated samples
 - Splitless injection is best for very dilute solutions
 - On-column injection is best for quantitative analysis and thermally instable compounds